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1. Introduction 

The motivation for this report is to enhance the maneuverability of gun-launched munitions at 

low cost. High-maneuverability aircraft and missiles have been in existence for many years. The 

cost of these technologies, however, is a detractor for application to the gun-launched 

environment. The land warfare community requires a high volume of available fires, and the 

projectiles are one-time use in contrast to manned and unmanned aircraft. Additionally, 

maneuver authority is often limited in the gun application due to stowing aerodynamic 

stabilizing and control surfaces for tube launch and reduced dynamic pressure for aerodynamic 

control due to the frequent absence of a rocket motor. Components must be hardened to survive 

the gun-launch event. Finally, the performance of low-cost guidance, navigation, and control 

(GNC) technologies (e.g., initial measurement time, measurement calibration, measurement 

update rates, actuator bandwidth, and processor throughput) is stressed in the dynamic ballistic 

environment (high Mach number, short time of flight, high spin rate). 

Despite these challenges, precision munitions have enjoyed some development in recent years. 

Feedback measurements from a laser designator have been used in guided projectiles (Morrison 

and Amberntson, 1977; Davis et al., 2009). Global positioning system navigation has been used 

more recently for precision munitions (Grubb and Belcher, 2008; Moorhead, 2007; Fresconi, 

2011). These efforts all focused on indirect fire weapons mainly against stationary targets. The 

airframes either featured low inherent maneuverability or the nature of the feedback 

measurements did not permit intercepting moving targets. 

The goal of this report is to provide the fundamental theory of flight systems and basic guidance 

and control strategy for low-cost enhanced projectile maneuverability. Nonlinear equations 

governing flight motion, actuator response, and measurements are essential for simulation of 

guided projectiles, and some of this theory is readily available in the ballistics community 

literature (Murphy, 1963; Nicolaides, 1963; McCoy, 1999). This report describes these 

multidisciplinary nonlinear models in a comprehensive manner and formulates them for the 

present problem. Linearization and incorporation of flight, actuator, and measurement models 

into various system models is critical to understanding guided flight behavior and underpins 

control design. 

The overarching guidance and flight control strategy for low-cost enhanced maneuverability is 

sketched. The family of proportional guidance laws, which are based on the measurement 

models and enable interception of moving targets with minimal feedback measurements, is 

outlined. Flight control techniques are provided that use the system modeling and accommodate 

low-cost actuation and measurement technologies.
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Characteristics of a high-maneuverability airframe and low-cost GNC system are given. Linear 

flight control and nonlinear guidance and flight control simulation results demonstrate the 

implementation of the theory and efficacy of the GNC solution. 

2. Theory 

2.1 Reference Frames, Coordinate Systems, and Definitions 

The equations of motion are formulated in the inertial frame. The body frame is often necessary 

for aerodynamic modeling and incorporating mass asymmetries. The Earth coordinate system 

(subscript E) is used for the inertial frame, and the body-fixed coordinate system (subscript B) is 

used for the body frame. These coordinate systems obey the right-hand rule and are related by 

the Euler angles for roll ( ), pitch ( ), and yaw ( ) as shown in figure 1. The origin of the Earth 

coordinate system is often placed at the launch location with the x axis running through the target 

centroid. 

 

 

Figure 1. Earth and body-fixed coordinate systems and Euler angles. 
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Applying trigonometry with the standard aerospace rotation sequence (Z-Y-X) yields the 

transformation matrix from quantities in body-fixed coordinates to Earth coordinates. 

        

                          
                          
           

  (1) 

Transformation matrices are orthonormal, featuring the property that the matrix inverse is equal 

to the matrix transpose; so to obtain a vector in body-fixed coordinates given a vector in Earth 

coordinates, simply take the transpose of the transformation matrix from body-fixed to inertial 

coordinates and multiply by the vector in Earth coordinates (e.g.,          
    ). 

Another coordinate system is often used for the body frame. The fixed-plane coordinate system 

is rigidly attached to the body but the    axis remains parallel to the Earth ground plane. The 

transformation matrix between the Earth and fixed-plane coordinate systems is 

        

           
          
      

  (2) 

Figure 2 shows the body-fixed and fixed-plane coordinate geometries. Quantities in body-fixed 

coordinates are related to fixed-plane coordinates in the following manner. 

        

   
      
     

  (3) 

 

 

Figure 2. Body-fixed and fixed- 

plane coordinate 

systems for body 

reference frame 

(viewed from 

projectile base). 

The sign convention associated with deflecting aerodynamic surfaces with respect to the body-

fixed coordinate system must be defined. In general, aerodynamic surfaces may be moved in 

concert to influence the roll, pitch, and yaw dynamics. Figure 3 shows four moveable surfaces 

equally distributed around the projectile as well as the numbering scheme and sign convention 
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associated with the trailing edge. The moveable aerodynamic surfaces are numbered starting 

with the surface with smallest roll angle and proceeding with increasing roll angle. Deflection of 

all moveable aerodynamic surfaces with a positive sense produces negative roll acceleration. 

 

Figure 3. Moveable aerodynamic surface numbering scheme 

and trailing edge deflection sign convention 

(viewed from projectile base). 

Individual moveable aerodynamic surfaces combine to yield effective roll, pitch, and yaw 

deflections. The drag deflections are not used in the maneuver scheme. 

 

   
 

 
              

   
 

 
             

   
 

 
             

   
 

 
             

 (4) 

 

Rearranging equation 4 provides individual moveable aerodynamic surface deflections in terms 

of roll, pitch, and yaw deflections. 
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 (5) 

2.2 Nonlinear Flight Dynamic Modeling 

Rigid body projectile flight states are center-of-gravity position       , attitude 

      , body translational velocity       , and body rotational velocity       . 

Kinematics provides the relationships between motion in the body and inertial frames. 

Translational and rotational kinematics for the body-fixed coordinate system (Murphy, 1963; 

McCoy, 1999; Nicolaides, 1963) are 

  
  
  
  
   

                          
                          
           

  
 
 
 
  (6) 

 

  

  

  

  
   

         
      
           

  
 
 
 
  (7) 

Newton’s second law of motion may be applied to derive the dynamics of a rigid-body projectile 

in flight. The translational dynamics may be expressed in body-fixed coordinates (Murphy, 1963; 

McCoy, 1999; Nicolaides, 1963): 

 

  
  
  
  
  

 

 
 
 
 
 
   

    
    

    
  

 
 
 
  (8) 

 

  
  
  
  

       
 
 
 

       

    
    

    
    

 
 
 
  (9) 

The forces are comprised of aerodynamic and gravity (   
       

       ) terms. Moments 

are solely aerodynamic. 

Expressing the kinematics and dynamics in fixed-plane coordinates often offers advantages in 

terms of numerical run time. The highest resolved frequency in the fixed-plane formulation is the 

pitch/yaw rate, so some mass asymmetries, high spin-rate applications, or control mechanisms 
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that change at a spin rate that is higher than the pitch/yaw rate may not be modeled properly. In 

the fixed-plane equations of motion that follow, quantities with a tilde are in fixed-plane 

coordinates. 
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  (13) 

 

2.3 Nonlinear Aerodynamic Modeling 

The aerodynamic model relates the aerodynamic data to the aerodynamic forces and moments 

acting on a projectile in flight. Aerodynamic data, in the form of coefficients, reduces the 

complex fluid mechanics around the projectile to a form amenable to analysis. Aerodynamic 

characterization techniques (semi-empirical, wind tunnel, computational fluid dynamics, spark 

range, and onboard sensors) yield forces and moments in the body frame. An illustration of the 

projectile with the body-fixed coordinate system (figure 4) permits definition of the sense of 

forces and moments and aerodynamic angles.  

 

Figure 4. Body-fixed coordinate system and aerodynamic angles. 
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Aerodynamic angles are computed based on the body-fixed velocity components. The pitch 

angle of attack (or sometimes just angle of attack) is defined as 

        
 

      
      (14) 

The yaw angle of attack (or, sometimes, sideslip angle) is 

        
 

         
  (15) 

The aerodynamic roll angle is 

         
 

 
  (16) 

Finally, the total angle of attack is the root-square-sum of the pitch and yaw angles of attack: 

           (17) 

Aerodynamic angles may also be computed in fixed-plane coordinates by replacing the body-

fixed coordinate velocities in equations 14–17 for aerodynamic angles with the corresponding 

fixed-plane coordinate velocities. 

Total aerodynamic forces and moments are separated into rigid and moveable aerodynamic 

surfaces. 

Rigid aerodynamic surface forces include static (linear and nonlinear) and dynamic terms. 

Symbols in parenthesis indicate functional form of aerodynamic coefficients. The dynamic 

pressure is    
 

 
    and the aerodynamic reference area is   

 

 
  , where   is the projectile 

diameter and   is the total velocity. 

           
      

              (18) 

 

 
          

       
       

   
                          

       
  

  
  

(19) 

 

 
          

       
       

   
              

            
       

  

  
  

(20) 

Rigid aerodynamic surface moments include static (linear and nonlinear) and dynamic terms. 

The pitching moment accounts for a center of gravity (   ) that has been shifted from the center 

of gravity (     ) used to obtain the aerodynamic data. The center of gravity is measured from 

the nose and is given in units of calibers.
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(21) 

 

          
       

          
  

        

    
   

  

  
    

            
       

  

  
 

                

(22) 

 

 

           
       

          
  

        

    
   

  

  
    

            
       

  

  
 

                

(23) 

The following approach may be used to calculate moveable aerodynamic surface forces and 

moments for the     blade. First, compute local velocity at each blade from center-of-pressure 

data (CP, measured in calibers forward of CG), blade geometry (   
), and rigid-body states 

using the equation relating the velocity of two fixed points on a rigid body. 

                                 
 (24) 

where               ,               , and 

        
             

                      
           

  
 
. The axial and 

radial center of pressure of the moveable aerodynamic surface is a function of Mach number and 

lifting surface deflection angle   . 

Obtain local velocity at each blade in the blade coordinate system using the transformation 

matrix: 

       
  

   
        

        
 

         
        

 

  (25) 

 

 

 
 
 
    

  

   

  

   

  
 
 
 
 

       
 

   

 

   

 

   

 

  (26) 

Calculate local blade angle of attack from the local velocity in each blade coordinate system: 

    
     

 
 
 
    

  

    

  
 
    

  
 

 
 
 
 

 (27) 
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Determine lifting surface aerodynamic coefficients: 

   
      

          
  

          
    

 (28) 

 

   
      

        (29) 

   
      

           

             
   

  
          

    
 (30) 

 

   
      

           
             

   
  

          
    

 (31) 

 

Compute blade axial and normal force and roll and pitching moment: 

    
     

    
   (32) 

 

    
    

    
   (33) 

 

    
     

   
   (34) 

 

    
    

    
      

             (35) 

Transform these blade forces and moments in the blade coordinate system to the body-fixed 

coordinate system: 

  

   

 

   

 

   

 

        

  

   

 
   

  (36) 

 

  

   

 

   

 

   

 

        

  

   

   

 

  (37) 

 

This aerodynamic model only serves as a framework since the amount, source, and type of 

aerodynamic data, as well as flight phenomena such as interactions, dependence on aerodynamic 

roll angle, etc., are specific to a particular airframe at a given stage in development. 

2.4 Nonlinear Actuator Dynamic Modeling 

Actuator dynamics are modeled as a first-order system with time delay and bias. 

                         (38) 
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This modeling approach is consistent with experimental characterizations of low-cost actuation 

technology, as seen in figure 5. The appropriate actuator model must be adjusted for a specific  

problem through experiments and system identification. Actuator dynamics may also be 

examined and coupled with projectile flight dynamics at a more fundamental level (Fresconi  

et al., 2011). 

 
Figure 5.  Experimental actuator characterization. 

2.5 Nonlinear Measurement Modeling 

Measurements provide feedback necessary for projectile guidance. Accelerometers, angular rate 

sensors, magnetometers, and imagers are the primary measurements of interest. A schematic of 

an arbitrary sensor at point M with axes oriented relative to the body-fixed coordinate system is 

shown in figure 6.
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Figure 6. Body-fixed and measurement coordinate systems. 

The specific aerodynamic force in the body frame, the quantity measured by an accelerometer, 

can be expressed in terms of Earth or body-fixed states by applying Newton’s second law. 

 

   
       

  
        

 

  
        

 
        

 

  
                

       
        

(39) 

The equation for the acceleration of two fixed points on a rigid body may be used to model the 

accelerometer off the projectile CG (using body-fixed states). 

    
  

        
 

  
                

       
                       

                        

(40) 

Integrated sensors suffer from errors in scale factor, misalignment, misposition, bias, and noise. 

An expression for an accelerometer corrupted by these errors can be developed. 

 

   
           

        
 

  
                

       
                

                
                 

                
           

(41) 

Angular rate sensors measure the angular velocity of the body with respect to the inertial frame 

in body-fixed coordinates. A model for angular rate sensors with scale factor, misalignment, 

bias, and noise errors is  

                                   (42) 
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Magnetometers observe the local Earth’s magnetic field. Ignoring induced electromagnetic 

effects (spinning ferrous body, actuators, etc.), a model for the magnetometer includes scale 

factor, misalignment, bias, and noise errors. 

                    
               (43) 

The scale factor matrix for any sensor can be written as the identity matrix with a scale factor 

error unique to each orthogonal axis. 

      

        
  

         
 

          

  (44) 

The transformation from any sensor axes to the body coordinate system, including misalignment 

errors, is as follows. 

        

 
       

 
 
       

 
  

       
 

 
       

 
 
       

 

 
       

 
 
       

 
 
       

 
 
       

 
 
       

 

  
       

 
  

       
 

  (45) 

The bias error of some sensors may feature a term due to the power-up process and an additional 

term that drifts in flight and can be modeled with a Markov process. 

                 (46) 

The equation for the update of a Markov process is 

                       
                 (47) 

with the correlation    
 

  
   , where    is the sample time and     is the time constant. 

An imager model can be constructed by first defining the geometry in figure 7 between the Earth 

and line-of-sight (LOS) coordinate systems associated with the inertial frame and the body-fixed 

coordinate system associated with the body frame.
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Figure 7. Earth, LOS, and body-fixed coordinate systems. 

The relative position of the target and projectile in the inertial frame is 

     
      

      
  (48) 

The angles of the LOS coordinate system with respect to the Earth coordinate system are 

   
        

     
 

     
   (49) 

 

   
       

 

 
     
 

      
  

      
  

 

  (50) 

The transformation matrix from Earth to LOS coordinates may be formed based on the angles 

between the coordinate systems. 

        

   
    

     
    

    
 

   
    

    
    

    
 

    
     

 

  (51) 

 

The velocity of the target with respect to the projectile in the inertial frame is 

       
        

        
  (52) 

The relative position in body-fixed coordinates can be written given the transformation matrix.
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  (53) 

Using the relative position in body-fixed coordinates, the angles of the target centroid as seen by 

a strapdown seeker can be determined. Bias and noise may be added for modeling real-world 

measurements. 

   
        

     
 

     
         (54) 

 

   
       

 

 
     
 

      
  

      
  

 

        (55) 

Angular velocity of the LOS coordinate system can be derived given the relation (Greenwood, 

1965) 

         
 

       
            (56) 

Substituting the expression for the relative position and velocity of the target with respect to the 

projectile in the Earth coordinate system in equation 56 for the angular velocity yields the 

angular velocity components of the LOS coordinate system. 

    
  

     
        

       
        

 

     
  

      
   (57) 

 

    
  

      
  

      
  

       
       

         
  

        
  

     
  

      
  

      
   

(58) 

Transforming the LOS rates to the LOS coordinate system and incorporating bias and noise 

errors characteristic of a practical imager yields  

    
     

    
     

    
    

        (59) 

 

    
     

    
        (60) 

2.6 Linear Flight Dynamic Modeling 

The nonlinear equations of motion for projectile flight are linearized by making a few 

assumptions (Murphy, 1963; Etkin, 1972). Off-diagonal inertia tensor terms are small compared 

with the diagonal terms. Products of dynamic states (i.e.,            ) are neglected. Total 

angle of attack is small, and aerodynamic normal force and pitching moment trims, as well as 

side forces and side moments, are neglected so that only linear terms remain in the aerodynamic 

model.
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Additionally, the aerodynamic contribution of the moveable aerodynamic surfaces is cast in 

terms of the deflections for roll, pitch, and yaw. 

The linear roll dynamics are expressed in equation 61. The static roll moment remains because of 

the ability of fin cant to maintain ballistic accuracy over unguided portions of the flight. 

    
   

   
    

   

   
    

   
   

   

 

  
     (61) 

The linear pitch rate dynamics: 

    
   

   
   

  
   

   
    

   
   

   

 

  
   

  (62) 

Finally, the linear pitch acceleration: 

    
  

 
   

  
  

 
    

   (63) 

The linear yaw rate and yaw acceleration have a form similar to the linear pitch rate and pitch 

acceleration dynamics, respectively, and are provided later. 

Taking the time derivative of the linear pitch acceleration dynamics with the linearization 

assumptions (body frame is stationary when neglecting products of dynamic states) yields 

    
  

 
   

   
  

 
    

    (64) 

Figure 8 shows the relationship between the Euler angle, angle of attack, and velocity vector 

angle in the pitch plane. 

 

Figure 8. Relationship between Euler angle, angle of attack, and velocity vector angle in pitch plane.
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From figure 8 we see that 

        (65) 

Taking the time derivative of the expression above and assuming that the body frame is 

stationary, the rate of change of the Euler angle is the body pitch rate. 

             (66) 

We know from general curvilinear motion that the acceleration component normal to the velocity 

vector can be obtained by the product of the radius of curvature and square of the angular rate. 

Additionally, this expression can be manipulated by the definition of the velocity and the 

equation for the rate of change of the velocity vector. 

        
 
                      (67) 

Solving equation 67 for the rate of change of the angle of attack results in 

      
  

 
 (68) 

Substituting equations 68 into 64 provides an expression for pitch acceleration rate. This 

equation has pitch acceleration (measurable with an accelerometer) rather than angle of attack 

(not easily measurable) as a dependent variable. 

    
  

 
   

   
  

 
  (69) 

Next, the pitch rate dynamics and the pitch acceleration dynamics are premultiplied with an 

appropriate factor and subtracted. 

 

  

 
   

    
   

   
   

  
   

   
    

   
   

   

 

  
   

  

 
   

   
   

    
  

 
   

  
  

 
    

      

(70) 

Solving equation 70 for the pitch rate provides an expression with pitch acceleration (measurable 

with an accelerometer) rather than angle of attack (not easily measurable) as a dependent 

variable. 

    
   

   

 

  
   

  
  

   

   

   

    
   

   
    

 
   

   

   

   

    
    (71) 

A similar exercise yields the yaw rate and yaw acceleration rate dynamics. Some sign changes 

from the pitch dynamics occur on a few terms in the yaw dynamics. 

     
   

   

 

  
   

  
  

   

   

   

     
   

   
    

 
   

   

   

   

    
    (72) 
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  (73) 

The linear flight dynamics are now cast into state space form for state dynamics 

                    (74) 

and the measurements. 

                 (75) 

The state vector is defined: 

                 (76) 

The controls are the roll, pitch, and yaw deflections. 

                (77) 

The state transition matrix follows. The roll angle dynamics are incorporated by simple 

integration of the roll rate. 
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The controls matrix: 

      

 
 
 
 
 
 
 

 
   

   
    

 
 
 
 

 
 

   

   
    

 
 
 

 
 
 

 
   

   
    

 
  

 
 
 
 
 
 

 (79) 

The static roll moment appears as a steady-state term that is independent of the state and control 

vector. 

     

 
 
 
 
 
 
 

 
   

   
   

 
 
 
  

 
 
 
 
 
 

 (80) 

The measurement matrix is simply the identity matrix (         ) since feedback consists of 

accelerometers, angular rate sensors, and magnetometers. All states are directly measureable 
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except for roll angle, which would come from integrating an angular rate sensor or using only a 

magnetometer or some combination of magnetometer, accelerometer, and angular rate sensor in 

an observer. For this formulation,        . 

2.7 Linear Actuator Modeling 

The nonlinear actuator model is composed of a first-order system, time delay, and bias. The 

ordinary differential equation of the first-order model for the actuator is 

          (81) 

The transfer function form of a first-order system is used to represent the first-order actuator 

dynamics. 

       
   

     
 (82) 

The Laplace transform of a time delay is  

                  (83) 

We seek to approximate this exponential in frequency space to build a linear model for the 

actuator time delay. The Maclaurin series approximation to a function is  

        
       

  

  

   

   (84) 

Applying the Maclaurin series to the Laplace transform of the time delay results in  

             
  

 

 
   

  
 

  
     (85) 

Pade approximants consist of polynomial expansions in the numerator and denominator. 

       
   

  
     

   
  

     
 (86) 

The coefficients in the numerator and denominator can be found through recursive relationships 

by setting the Pade expansions equal to the Maclaurin series and solving for the coefficients for 

polynomials of like order. 

   
       

  

  

   

       

  

   

       

  

   

     (87) 

The transfer function form of the Pade approximant is 

       
   

            

   
           

 (88) 
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A plot of a 12th-order Pade approximation and the exact time delay of 1 s for a step response are 

shown in figure 9. Comparing these two curves illustrates the error associated with 

approximating the nonlinearity with high-order polynomials. 

 
Figure 9. Approximate and exact response with time delay. 

Applying superposition to the linear models for the time delay and first-order system expressed 

in transfer function form is shown in block diagram form in figure 10. This enables modeling the 

actual deflection given the commanded deflection. 

 

Figure 10. Block diagram of time delay and first-order system dynamics. 

Multiplying transfer functions yields equation 89. Assume that        .
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(89) 

The transfer function for the time delay and first-order system can be expressed in a chain rule 

form to eventually yield a state-space model in control canonical form. 

      
    

     
 

    

    

    

     
 (90) 

The right-most term is  

 

    

     

 
 

     
          

   
     

        
   

   
      

   
  

 
   

 
(91) 

Converting from frequency space to time space produces a high-order ordinary differential 

equation. 

 

           
          

   
     

            

   
       

 
        

   
   

      

   
   

 

   
  

 

   
   

(92) 

The left-most term in equation 91 is  

 
    

    
 

  

   
     

  

   
  

  

   
 (93) 

The time response of the actuator with time delay and first-order dynamics is obtained by  

      
  

   
       

  

   
   

  

   
  (94) 

A state-space model of the actuator with time delay and first-order dynamics was constructed 

with the following state vector. 

                      
  (95) 

The control for the actuator is simply the deflection command. 

          (96) 

Arranging terms in the differential equations provided in equation 92 with the definitions of the 

state and control vectors produces the state transition matrix.
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  (97) 

Likewise, the control matrix can be formed. 

        

 

   

      

  (98) 

The measurement matrix, (        ): 

       
  

   

    

   

 
  

   

  

   
  (99) 

The exact nonlinear and linear approximation (     for Pade approximant) to the time delay 

(1 s) with first-order system (1-s time constant) are presented in figure 11. There is little error 

between the approximate and exact solutions for this case. 

 

Figure 11. Approximate and exact response with time delay and first-order system.
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The state-space model of the actuator with time delay and first-order dynamics is for a given 

deflection. The flight model features roll, pitch, and yaw deflections. A comprehensive roll, 

pitch, and yaw state-space model may be constructed by building on the individual state-space 

model outlined in equations 95–99. The state vector and control vector is composed of three 

subvectors. 

            
       

       
  

 
 (100) 

 

              
        

        
  

 
 (101) 

The state transition, control, and measurement matrices are  

      

                          

                          

                          

  (102) 

 

       

                       

                       

                       

  (103) 

 

      

                      

                      

                      

  (104) 

2.8 Linear System Modeling with Time Delay 

Realization of the actuator with time delay and first-order dynamics with the flight dynamics 

yields a system model. The block diagram of the combined system is presented in figure 12. 

 

Figure 12. Block diagram of actuator time delay and first-order system 

and flight dynamics. 

Figure 12 shows that the response of the actuator drives the flight behavior. This mathematical 

relationship allows coupling of the actuator and the flight dynamics. 

          (105) 
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The state and control vectors are made up of the flight and actuator with time delay and first-

order dynamics, as derived earlier. 

          
    

    (106) 

 

            
     

    (107) 

The state transition matrix is composed of the flight and actuator state transition matrix and an 

additional term in the top right of the matrix due to the coupling as given in equation 108. 

       
          

              
  (108) 

The coupling reduces the controls matrix to the following equation. The top-left portion of the 

matrix is a block of zeros since the coupling has picked off the controls matrix for the flight 

model. 

        
            

               
  (109) 

The      vector is a concatenation of the     vector followed by a row of zeros the length of    . 

The measurement matrix for the system is  

       
              

         
  (110) 

2.9 Linear System Modeling Without Time Delay 

Another useful linear system model is for the flight dynamics and first-order actuator dynamics 

without time delay. The state vector for this system is  

                      
 
 (111) 

The control vector is  

                     
 
 (112) 

The state transition matrix is formed based on the dynamic modeling performed for the flight 

dynamics and first-order actuator.
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 (113) 

The control matrix takes the following form. 

       

 
 
 
 
 
  
  
   

 

  
 
 

      

 
 

  
 

      

 
 
 

   
 
 
 
 
 

 (114) 

Again, the static roll moment is included. 

      

 
 
 
 

 
   

   
   

       
 
 
 

 (115) 

Finally, the measurement matrix is shown. Feedback of deflection is currently not assumed; 

however, the model could easily accommodate these measurements by adding the identity matrix 

along the bottom-right block of the matrix. 

       
           

            

  (116) 

 

3. Guidance and Flight Control 

3.1 Proportional Navigation Guidance Law 

Proportional navigation is based on the idea that target interception will occur if the LOS angular 

rate between the target and interceptor is driven to zero. This notion can be expressed 

mathematically in terms of a desired lateral acceleration.
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                 (117) 

The gain is usually between 3 and 5. Equation 117 is one representation of proportional 

navigation; there are many different variants in the literature (Zarchan, 2007). 

The closing velocity is calculated from the projection of the velocity vector onto the line of sight 

(   axis). Bias and noise errors can be added to the true closing velocity to model measurement 

corruption. 

    
    
 

     
  

      
  (118) 

The proportional navigation law with gravity compensation, in body-fixed components, is  

  

  
  

  
  

  
  

           
       

 
   

 

   
 
       

  
 
 

  
  (119) 

In practice, only lateral acceleration can be altered with aerodynamic control; range-rate 

measurements or heuristics supply the closing velocity, angular rate sensors, or magnetometers 

supply attitude, and an imager or spot detector provides the LOS rates. 

3.2 Optimal Flight Control 

The basic structure of a multiple input-multiple output feedback control system is shown in 

figure 13. The nonlinear dynamics of the actuator, flight, and measurements are fed back and 

combined with a reference to yield an error. Control commands, formed by multiplying this error 

by a gain, influence the system dynamics to achieve the desired response. 

 

Figure 13. Block diagram of nonlinear system dynamics with feedback control. 

Linear dynamics are often used for control. The block diagram of the linear system dynamics 

with feedback control is illustrated in figure 14. Nonlinear dynamics of the actuator, flight, and 

measurements have been replaced by linear system transfer functions. An observer could be 

designed and placed in the feedback path; however, this is outside the scope of this report.
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Figure 14. Block diagram of linear system dynamics with feedback 

control. 

The relationship between the transfer function and state space model is obtained by manipulating 

the Laplace transform of the basic state space model equations. 

                   
  

         (120) 

The linear system model without time delay that was derived earlier can be used for control 

purposes. The state space model can be defined with        ,          ,        ,          , 

       ,        , and             . The linear system model with time delay derived earlier may 

also be used for control purposes. If necessary, integral control could be added to this 

formulation by augmenting the state vector with additional states such as    
,     , and      with 

simple dynamics based in integrating states already in the system dynamics (e.g.,     
     ). 

The nonlinear measurement models outlined previously can be used to express the six feedback 

states. 

                  
       

     
 
 (121) 

For this problem, the desired response is to regulate the roll angle to any of four angles 

determined by symmetry (based on flying skid-to-turn in an “X” configuration), maintain zero 

roll rate, pitch rate, and yaw rate, and achieve the lateral accelerations dictated by the guidance 

law. Mathematically, the reference signal is expressed as 

           
     

   
 
 (122) 

Controlling roll rate to nonzero values as a means to incorporate low-cost measurement and 

actuation technologies is accommodated within the current framework by setting the roll angle 

gain to zero. 

Manipulation of the roll angle error signal is accomplished by the following function to ensure 

that the roll angle is controlled to the closest symmetry location. 

    

 
 
 

 
            

  

  
  

 

  
             

  

  
 

  

  

            
  

  
  

 

  
             

  

  
 

  

  

  (123) 

The number of roll angles for configuration symmetry is usually four. Figure 15 illustrates the 

manner in which the roll angle is converted into the roll angle error signal. 
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Figure 15. Roll angle and roll angle error. 

A variety of control techniques may be applied given the linear actuator and flight dynamics, 

measurement models, and feedback control structure presented. A linear quadratic regulator 

derived using optimal control theory was chosen. In the linear quadratic regulator development, 

the control command is based on minimizing a cost function. 

                             
 

 

 (124) 

The weightings for the tracking error      and control effort      are positive semi-definite and allow 

the designer to balance tracking each desired state with specific control demand. The control law 

that minimizes the cost function is 

             (125) 

The gain matrix can be found through the control effort weighting, the controls matrix, and the 

matrix    . 

          
  

        (126) 

The     matrix is obtained by solving the algebraic matrix Riccatti equation. 

                                         (127) 
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3.3 Smith Predictor 

Delays between the time of commanded control and when the effect of control is realized in the 

system dynamics occur because of a variety of physical processes and can add significant 

difficulty to the control problem. Additionally, the time delay magnitude may be higher when 

using low-cost technologies, such as commercial-off-the-shelf servomechanisms. The Smith 

predictor is a control strategy for dealing with time delays (Smith, 1959). A block diagram of the 

Smith predictor algorithm for the projectile problem is given in figure 16. The linear system 

model without and with time delay are used in augmenting the feedback system, and the 

nonlinear actuator, flight, and measurement models represent ground truth in simulation. 

Measurements are a function of the flight states and controls. 

 

Figure 16. Smith predictor. 

The basic idea of the Smith predictor is that a model of the system dynamics with time delay can 

be used to negate the true system dynamics with time delay. Controllers that do not inherently 

consider the time delay (such as the linear quadratic regulator) can then be applied since the 

resulting feedback signal has the time delay effectively removed. 

The linear system models without and with time delay are propagated forward in time in 

implementation of the Smith predictor. Feedback is altered by the following equation. 

                            (128) 

The Smith predictor is sensitive to modeling error and uncertainty in the model parameters. A 

modified Smith predictor (Tsai and Tung, 2012) has been proposed that has some disturbance 

rejection properties to handle modeling error and uncertain model parameters. The block 

diagram of the modified Smith predictor is shown in figure 17.
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Figure 17. Modified Smith predictor. 

Realization can be applied with the block diagram and dynamics (nonlinear and linear) derived 

earlier to determine the modified Smith predictor equations. The input to the actuator dynamics 

can be found by inspecting the block diagram. 

                          (129) 

 

4. System Characteristics 

The theory for the actuator, flight, and measurements and strategy for guidance and flight control 

relies heavily on system characteristics. Proper characterization of actuator, flight, and 

measurement parameters are essential to efficient guidance of highly maneuverable airframes to 

moving targets. An illustration of a high-maneuverability airframe is presented at the top of 

figure 18. This fin-stabilized, canard-controlled projectile has a diameter of 83 mm and is  

5 cal. long. Drag is minimized through a 7° boattail, and the hemispherical nose necessary for 

packaging guidance, navigation, and control components is satisfactory since only subsonic 

flight is intended. Flying a skid-to-turn configuration enables interception of more maneuverable 

targets since the projectile does not have to roll into the desired plane prior to pulling lateral 

maneuvers as in a bank-to-turn scenario. While canards complicate the aerodynamic 

characterization due to flow interactions, the projectile features more maneuverability than  

fin-only control. Fin cant improves accuracy over unguided portions of flight. 

Adding more aerodynamic surface area through the use of deploying wings is a way to further 

enhance maneuverability. The bottom of figure 18 sketches some concepts for canard control of 

body-fin-wing configurations. There are practical challenges associated with reliable deployment 

and integration with other subsystems such as warheads.
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Figure 18. High-maneuverability airframe. 

The mass properties (mean and uncertainty) of this projectile are given in table 1. 

Table 1. Mass properties. 

Property   Unit   Unit 

  0.083 m 0.12 % 

    0.219 m from nose 0.12 % 

  0.427 m 0.12 % 

  7.31 kg 0.41 % 

    0.0106 kg-m
2

 0.88 % 

        0.0690 kg-m
2

 0.71 % 
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The launch and flight are subsonic. Some aerodynamic data for this airframe, as obtained from 

computational fluid dynamics simulations at Mach 0.65, are provided in table 2.  

Table 2. Aerodynamic data at Mach 0.65 for             m from nose. 

Property   Unit   Unit 

   
 0.320 — 0.86 % 

   
    

 10.842 1/rad 1 % 

   
    

 –4.177 1/rad 2 % 

    0.0667 — 5 % 

    –10.392 — 5 % 

   
    

 –150 — 15 % 

    0.893 

Calibers 

forward 

CG 

2 % 

    0.848 

Calibers 

from spin 

axis 

2 % 

   
  0.0042 — 0.86 % 

   
  –0.808 1/rad 5 % 

   
  0.953 1/rad 1 % 

   
  0.851 1/rad 2 % 

 

A variety of actuation technologies (electric, pneumatic, piezoelectric, etc.) may be applied to 

deflect canards. Specific actuator characteristics may be defined through a cost-performance 

trade study. For the purposes of this report, actuator parameters given in table 3 are 

representative of low-cost, high-volume servomechanisms. The update rate of the actuator was 

500 Hz. 

Table 3. Actuator properties. 

Property   Unit   Unit 

  0.015 sec 20 % 

   0.030 sec 20 % 

   — — 1 ° 

 

Accelerometers, angular rate sensors, magnetometers, and imagers provide measurements for 

this problem. Similar to the actuation technology, cost-performance trades can be used to 

identify specific devices; however, some nominal measurement characteristics are given in  

table 4. Feedback update rate was 1000 Hz.
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Table 4. Measurement properties. 

Property   Unit 

   
    

(integrated 

misalignment) 
0.5 degree 

      
 (accelerometer) 0.0005 m 

   
 (accelerometer) 1.0 % 

     (accelerometer) 1.0 m/s
2

 

   
 (gyroscope) 2.1 % 

     (gyroscope) 0.1 rad/s 

   (imager boresight 

angles) 
10 degree 

   (imager boresight 

angular rates) 
0.01 rad/s 

   (closing velocity) 0.1 m/s 

 

The variation in the initial conditions of the projectile and target are provided in table 5. The 

target was modeled as a constant velocity, straight-line motion. 

Table 5. Launch variation. 

Property   Unit 

  
   

(uniform) 
rad 

  0.004014 rad 

  0.005411 rad 

  3.7 m/s 

  1.0 rad/s 

  1.0 rad/s 

  1.0 rad/s 

Target position 2.0 m 

Target velocity 0.5 m/s 

 

The controller parameters, found via stability analysis and tuning in the linear and nonlinear 

simulations, are given in table 6. The update rate of the flight controller was 500 Hz. 

Table 6. Controller properties. 

Property Value 

   10 

 
 

 0.05 

   100 

   0.05 

   10 

   10 

    0.8 

    0.8 
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5. Results and Discussion 

The theory for the flight, actuator, and measurements were implemented in simulation. A fourth-

order Runge-Kutta integrator was applied. The 1962 International Standard Atmosphere was 

used to determine air density and sound speed. Wind speed variations were taken according to 

ballistic range measurements such as artillery meteorological data staleness. A Dryden wind 

turbulence model incorporated fluctuations of wind throughout flight. 

A stability analysis was undertaken. The eigenvalues in figure 19 were shaped for desired 

performance with the linear flight and first-order actuator model and system characteristics 

provided earlier. Inspection of the controlled and uncontrolled (ballistic) data illustrates how the 

control increases the damping and frequency of the response. This airframe is statically unstable; 

therefore, the uncontrolled response has positive real roots. 

 

Figure 19. Characteristic values of linear system dynamics. 

Linear simulations were performed to assess ballistic flight behavior and tune the flight 

controller for the desired performance. The flight control algorithm was implemented in 

simulation. The results in figures 19–21 show performance of the linear quadratic regulator for a 

time delay of zero with nominal initial conditions.
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The roll dynamics and control demand are provided in figure 20. Inspection of the roll angle data 

illustrates the achieved roll angle, the roll error signal, and the desired roll signal. The roll angle 

error signal has been manipulated as outlined previously to maintain configuration symmetry of 

the moveable aerodynamic surfaces (i.e., the error is not the difference between the achieved and 

desired signals as shown in the plot). The roll rate plot provides similar data (desired, achieved, 

error). The commanded and achieved (based on actuator dynamics) roll deflection angles are also 

given. Overall, this control design yields satisfactory roll response with reasonable control effort. 

Adequate control of the roll dynamics is necessary for proper pitch and yaw control. 

 

Figure 20. Linear roll system dynamics response and deflection commands (linear quadratic regulator control 

with     ). 

Figure 21 shows the pitch dynamics for a desired pitch acceleration of 50 m/s
2
.  Pitch deflections 

oscillate initially to sufficiently damp angular rate. The desired pitch acceleration is tracked to 

less than 1 m/s
2 

error by deflecting in pitch to about 5°.
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Figure 21. Linear pitch system dynamics response and deflection commands (linear quadratic regulator 

control with     ). 

The yaw dynamics in figure 22 are similar to the pitch dynamics in figure 21. Here, a 20-m/s
2
 

yaw acceleration demand is adequately met with about a 2° yaw deflection. Yaw rate is also 

satisfactorily damped. Reducing angular rate aids tracking lateral acceleration.
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Figure 22. Linear yaw system dynamics response and deflection commands (linear quadratic regulator 

control with     ). 

A Monte Carlo study was performed to assess the influence of system uncertainties on the 

controlled flight performance with     . The initial conditions, mass properties, aerodynamic 

coefficients, actuator characteristics, and measurement errors were varied according to the 

parameter distributions supplied earlier. Linear simulations were run for each Monte Carlo trial 

for 1.5 s, and the errors between the desired and achieved state were tabulated. The mean (shown 

in solid circle) and +/- standard deviation (shown in “X”) of these errors is given in figure 23. 

Different colors in the figure represent different states. The error budget for the system 

uncertainties was scaled by different factors (0.1, 1, 2, 3) for trend analysis. With the exception 

of roll angle, the mean controlled state errors do not vary much. Roll angle is biased about 1°–2° 

due to the fin cant. This effect could easily be accounted for with some feed-forward action. The 

standard deviation of the errors for all states but roll, pitch, and yaw rates grows linearly with the 

error budget factor. The angular rate errors are low because the control is effective and damping 

moments are active.
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Figure 23. Linear system simulation – Monte Carlo response trades. 

The pitch dynamics are isolated to investigate the effects of time delay. Linear simulations were 

performed with a nonzero time delay. The unstable behavior of the linear quadratic regulator for 

nonzero time delay is evident in figure 24. Commanded pitch deflections oscillate back and forth 

at the saturation levels and produce poor tracking in pitch acceleration and pitch rate.
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Figure 24. Linear pitch system dynamics response and deflection commands (linear quadratic regulator 

control with     ). 

The value of modeling the system dynamics with time delay in the controller is apparent when 

using the Smith predictor, which was implemented in simulation, and linear results with nonzero 

time delay are provided in figure 25. Augmenting the linear quadratic regulator with the Smith 

predictor yields a satisfactory system response, especially when compared with the data in figure 

21. The desired pitch rate and pitch acceleration are met with reasonable pitch deflection 

commands. 
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Figure 25. Linear pitch system dynamics response and deflection commands (linear quadratic regulator and 

Smith control with     ). 

Nonlinear system simulations were conducted to further investigate the flight control and 

demonstrate guidance performance against moving targets. The projectile was launched at sea 

level and a muzzle velocity of 250 m/s with the target initially located along the line of fire  

1000 m downrange. The target was moving 5 m/s in the cross-range direction. 

A sample Monte Carlo trajectory with system characteristics outlined previously is provided in 

figure 26. The projectile maneuvers toward the target with a small point of closest approach. The 

target moves about 20 m in cross range over approximately 5 s of projectile time of flight.
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Figure 26. Nonlinear system simulation – trajectory. 

The Mach number and pitch and yaw angles of attack are shown in figure 27. The projectile does 

not decrease much in Mach over the 5-s flight. The angles of attack, dictated primarily by the 

desired lateral accelerations from the guidance law, are low and well within the bounds of the 

high-maneuverability airframe. 

 

Figure 27. Nonlinear system simulation – Mach number and angular motion histories.
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The performance of the roll control in the nonlinear simulations is provided in figure 28. The 

desired, achieved, and measured (i.e., corrupted truth) states are given in the relevant plots for all 

nonlinear system simulations. Both roll angle and roll rate feature good response. Roll 

deflections angles are about 1° to counteract the fin cant after the initial roll control action near 

launch. Roll commands (as well as pitch commands and yaw commands in subsequent results) 

are biased significantly from the truth due to the manner in which the individual moveable 

aerodynamic surfaces are modeled and mixed to form the roll command. 

 

Figure 28. Nonlinear system simulation – roll system dynamics response and deflection commands. 

Pitch dynamics are presented in figure 29. Pitch rate is controlled to near zero as desired. 

Comparing the desired pitch acceleration, computed from the proportional navigation guidance 

law, and the achieved and measured pitch accelerations shows errors less than 1 m/s
2
 during the 

majority of flight. Modest pitch deflections are necessary to achieve this pitch rate and pitch 

acceleration response.
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Figure 29. Nonlinear system simulation – pitch system dynamics response and deflection commands. 

The yaw dynamics shown in figure 30 are similar to the pitch dynamics. Again, desired yaw 

angular rate and yaw acceleration are satisfactorily achieved with small yaw deflection 

commands. 
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Figure 30. Nonlinear system simulation – yaw system dynamics response and deflection commands. 

The roll, pitch, and yaw deflection commands are turned into individual moveable aerodynamic 

surface commands as outlined earlier. The individual commands and truth response are provided 

in figure 31. The deflections are larger near launch due to initial control action and vary slowly 

with amplitudes under 5° throughout flight. Amplitude increases sharply just prior to intercept.
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Figure 31. Nonlinear system simulation – individual canard deflection commands. 

The motion of the target as measured by an imager is shown in figure 32 (open circle denotes 

initial measurement and “X” denotes final measurement). The controlled flight dynamics 

produce a complex pattern in the image plane. The angles are relatively small (less than 10°) and 

the imager angular error does not converge to zero for successful target intercept.
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Figure 32. Nonlinear system simulation – target centroid measured by imager. 

A batch of 100 Monte Carlo flights were simulated, and the point of closest approach was 

tabulated. Overall, 94% of the projectiles flew within 0.1 m of the moving target. A histogram of 

the flights within 0.1 m of the target is provided in figure 33. Implementing the theoretical 

models outlined previously in simulation with the current characteristics for this GNC system 

yields miss distances often less than 0.02 m.



 

46 

 

Figure 33. Nonlinear system simulation – Monte Carlo miss distance. 

Monte Carlo trials were performed in the nonlinear system simulation to quantify the 

relationship between guided performance and system uncertainties. Again, the parameter 

distributions outlined previously were used in the simulations. All uncertainties were scaled by a 

factor to illustrate trends. Monte Carlo simulations were conducted by isolating each parameter 

category (e.g., initial conditions, mass properties) and running all parameter errors together. 

These results are provided in figure 34. All average miss distances are less than 0.02 m.  

Comparing the initial-condition-only cases with the all-parameter-error cases suggests little 

contribution from initial condition variations. Miss distance will be influenced by initial 

conditions if the combination of targeting and fire control are so poor that the projectile cannot 

physically intercept the target. 

Mass properties and aerodynamics uncertainties do not greatly contribute to the overall miss 

distance. Indeed, Monte Carlo cases were able to be run with 5 and 10 times the nominal error 

budget for these categories without appreciable changes in the miss distance. Intolerance of the 

miss distance to these parameters is due to the nature of the feedback control strategy and the 

magnitude of round-to-round physical (mass and aerodynamics) variability.
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Figure 34. Nonlinear system simulation – Monte Carlo miss distance trades. 

Miss distance is also not driven by the actuator characteristics and variability for this system.  

Miss distances for the actuator-only cases are relatively small compared with the all-parameter 

cases. Additionally, miss distance does not vary significantly even when the nominal variability 

is scaled by a factor of 3. 

Measurement errors are the main contributor to miss distance. Monte Carlo miss distances for 

the measurement-only errors are similar in magnitude to the all-parameter cases. These results 

suggest proper measurement design (e.g., sensors, electronics) is critical to guided system 

performance. 
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6. Conclusions and Recommendations 

This report detailed theory concerning guided flight that is essential to constructing simulations 

for researching low-cost, high-maneuverability projectiles. The nonlinear equations of motion for 

projectile flight in body-fixed and fixed-plane coordinates were presented. Aerodynamic 

modeling included definitions of the angles of attack, linear and nonlinear static and dynamic 

terms, and a force and moment model for general moveable aerodynamic surfaces. Actuator 

dynamic modeling was performed. Nonlinear measurement models were discussed. Flight model 

states were manipulated to simulate the response of accelerometers, gyroscopes, magnetometers, 

and imagers. These feedback measurements are necessary for guidance and flight control. 

System identification for actuators and measurements is critical to adjusting models as 

appropriate for advanced precision concepts. 

Manipulation of these nonlinear models into linear system models were undertaken for airframe 

characterization and control design.  

A framework for guidance and flight control was built. The family of proportional navigation 

guidance laws was introduced. The basic feedback control system for guided projectiles was 

described. This report developed a suite of high-fidelity model-based flight controllers. 

System characteristics were provided for reproduction of results. Aerodynamic, actuator, and 

measurement parameter estimation are crucial to successful precision munitions concept 

maturation. 

The theory and guidance and flight control strategy was implemented in simulation to illustrate 

essential elements of low-cost, high-maneuverability GNC systems. Linear analysis allowed 

tuning controllers. The guidance and flight control performance were more comprehensively 

evaluated in the nonlinear simulations. Results indicated satisfactory system response with 

reasonable control input. When time delays are significant, it is necessary to explicitly model 

these effects in the control. 

Future efforts focus on applying and adapting this guidance and flight control approach to 

practical low-cost, high-maneuverability U.S. Army projectiles. Advanced guidance and flight 

control techniques are also being investigated to further reduce the cost of the actuation and 

measurement technology and increase maneuverability. 
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